Skip navigation.

GREEK SURNAMES

ΑΡΙΘΜΟΛΟΓΙΑ ΚΑΙ ΑΡΙΘΜΟΙ

Η πρώτη φυσική διάκριση των Αριθμών είναι σε ΜΟΝΟΥΣ και σε ΖΥΓΟΥΣ.
 ΟΙ ζυγοί αριθμοί είναι εκείνη πού μπορούν ΝΑ διαιρεθούν σε δύο ίσα μέρη, χωρίς νά αφήσουν τη μονάδα σαν υπόλοιπο. Οι μονοί αριθμοί, όταν χωριστούν σε δύο ίσα μέρη, αφήνουν και μία μονάδα σαν υπόλοιπο. Όλοι οι ζυγοί αριθμοί, έκτός από τη δυάδα, το δύο, πού είναι απλώς δύο μονάδες, μπορούν να χωριστούν σε δύο ίσα μέρη καθώς και σε δύο άνισα μέρη, άλλά και στις δύο αυτές περιπτώσεις δεν παρουσιάζονται οι άρτιοι μαζί με τους περιττούς αριθμούς, ή οι περιττοί μαζί με τους άρτιους. Ο δυαδικός αριθμός δύο δεν μπορεί νά χωριστεί σε δύο άνισα μέρη.
Έτσι το 10 χωρίζεται σε 5 και 5, πού είναι δύο ίσα μέρη, καθώς και σε 3 και 7, πού είναι περιττοί, και σε 6 και 4, πού είναι άρτιοι αριθμοί.
Αλλά ο μονός αριθμός χωρίζεται μόνο σε δύο άνισα μέρη και το ένα μέρος είναι ένας περιττός αριθμός και το άλλο ένας άρτιος αριθμός. Έτσι το 7 χωρίζεται σε 4 και 3, ή σε 5 και 2.
Οι αρχαίοι παρατήρησαν επίσης ότι ή μονάδα είναι «μονός» αριθμός και ότι είναι ο πρώτος «μονός αριθμός», γιατί δεν μπορεί νά διαιρεθεί σε δύο ίσους αριθμούς. Μία άλλη Ιδιομορφία πού παρατήρησαν ήταν ότι ή μονάδα, προστιθέμενη σε ένα ζυγό αριθμό τον καθιστούσε μονό, άλλά αν οι ζυγοί προσθέτονταν σε ζυγούς αριθμούς μας έδιδαν πάλι ζυγούς αριθμούς.
0 Αριστοτέλης στην Πυθαγορική πραγματεία του παρατηρεί ότι η μονάδα μετέχει και της φύσης του ζυγού αριθμού, γιατί όταν προστίθεται σε μονό αριθμό μας κάνει ένα ζυγό, και όταν προστίθεται σε ένα ζυγό σχηματίζεται ένας μονός αριθμός. Έτσι ονομάζεται «αρτιόμορφος μονός». 0 Αρχύτας από τον Τάραντα ήταν της ίδιας γνώμης.
Η Μονάδα είναι ή πρώτη Ιδέα του περιττού αριθμού. Κατά τον ίδιο τρόπο οι Πυθαγόρειοι θεωρούν το «δύο» σαν την «πρώτη Ιδέα της απροσδιόριστης δυάδας» και αποδίδουν τον αριθμό 2 σε κείνη την απροσδιόριστη, άγνωστη και απεριόριστη όψη στον κόσμο, ακριβώς όπως συσχετίζουν τη μονάδα με καθετί πού είναι καθορισμένο και κανονικό.